
1

Floating Point Functional Cores 
For

Reconfigurable Computing Systems

By
Clay Gloster. Jr., Ph.D., P.E.

Department of Electrical & Computer Engineering,
Howard University

Supported under NASA Contract # AIST-0016-0044
June 25, 2003



2

AIST Program Space Based NRA Technologies

Description and Objectives

Schedule and DeliverablesApproach

Co-PIs/Partners

ESTO     
Earth Science Technology Office

Application/Mission

Hierarchical Algorithms and their Embedded Hierarchical Algorithms and their Embedded 
Computational Realization in Reconfigurable HardwareComputational Realization in Reconfigurable Hardware

This project addresses problems associated with developing 
data products for deployment in onboard RC systems. It 
involves the development of a compiler that reads algorithm 
descriptions written in C.  The compiler will produce 
hardware and software components required for an RC 
implementation of typical NASA data products. The main 
objectives of this project are: efficient algorithm 
development and fast and reconfigurable hardware 
implementations (10X-100X speedup).

Develop a compiler to translate nested loops into a 
sequence of floating point vector instructions.  These 
instructions correspond to modules in a library that is to 
be developed as a part of this project.  Hardware 
modules will perform complex instructions i.e. 
matmult, vec-vecmult, FFT, LU Decomposition, etc.

- Prototype RC Test bed shown above (10/02)

-Prototype Compiler (10/02)

-Application  Demonstration (10/03)

-Final Compiler (10/03)

Hamid Krim, Tom Conte, NC State University

Thomas Flatley, NASA GSFC

Data Product Development for EOS/AM-1 Satellite

PI: Clay Gloster/Howard University
Proposal No:  AIST 0016-0044



3

Outline of this Presentation

• Background: Floating Point Numbers

• Introduction to Reconfigurable Computing

• A Compilation Tool for Reconfigurable Computing Systems

• A Reconfigurable Processor

• Floating Point Functional Cores

• Functional Core Performance / CLB Utilization



4

Floating Point Numbers

• Floating point number representations allow us to use real 
numbers on a computer

• Floating point numbers consist of a sign, mantissa, base, and 
exponent
– +10.34 x 1032

– +1.034 x 1033

• Since each floating point number can be represented an 
infinite number of ways, we normalize the number.
– +1.034 x 1033



5

Floating Point Numbers
IEEE Single Precision

8 bits 23 
bits

1 
bit

Total 32 bits
sign exponent mantissa

• Most computers support single (32-bit) precision 
formats

• Single precision format can express numbers from 
(-3.4 E 38 to 3.4 E 38)



6

Floating Point Addition 
(Complex)

To add two floating point numbers we:

•Align exponents while adjusting the mantissa of one 
operand

•Add resulting mantissas

•Compute the sign of the result based on the sign and 
magnitude of the two operands

•Normalize the result



7

Floating Point Addition

A = 0.500000
A = 3f000000
Sign A: = 0
Exponent A: = 01111110
Mantissa A: = 00000000000000000000000
Real Exponent = -1
Mantissa = 0

B = 0.500000
B = 3f000000
Sign B: = 0
Exponent B: = 01111110
Mantissa B: = 00000000000000000000000
Real Exponent = -1
Mantissa = 0

0.5 + 0.5 = ????
A + B = Q



8

Floating Point Addition

Q = 1.000000
Q = 3f800000
Sign Q: = 0
Exponent Q: = 01111111
Mantissa Q: = 00000000000000000000000
Real Exponent = 0
Mantissa = 0

0.5 + 0.5 = 1.0
A + B = Q



9

• Field Programmable Gate Arrays (FPGAs) are hardware 
reprogrammable integrated circuits that consist of an array 
of programmable gates, flip-flops, programmable pins, and 
a programmable interconnection network.

• One function can be loaded into an FPGA now (i.e. matrix 
multiplication) and another function (i.e. LU 
decomposition) can be loaded into the FPGA later.

• FPGAs have been used as coprocessors to typical 
processors (forming a reconfigurable computer) to 
speedup several applications by orders of magnitude.

• However, users of reconfigurable computers must be 
knowledgeable in both hardware design as well as 
software development.

• Additionally, mapping an application to a reconfigurable 
computer is tedious and can be time consuming.

Reconfigurable Computing



10

• The purpose of the compiler is to map user 
applications to FPGA-based reconfigurable computers 
(RC), (i.e. the BISON reconfigurable computer).

•The compiler takes the original source code written in 
C/C++ and a module library and produces two outputs: 
the modified source code and a session file for each 
modified section.

RCC
Compiler

RCC
Compiler

Programming
Language
Compiler

Programming
Language
Compiler

Original
Source
Code

Modified
Source
Code

Session files

Module
Library

New
Application
Executable

(Calls the 
Loader)

The RCC Compiler



11

Session
File1

Session
Filen

Module
Library

Calls to
the Loader

The
Loader

FPGA
API

FPGA
Board

New 
Application
Executable

RC System

General Purpose Processor

The Execution Phase:  Running the 
Application on the RC



12

The Module Library

• A hardware module is a pre-compiled, placed and routed, 
configuration file that is to be loaded into a specific FPGA device.  

• It is a configurable instruction set microprocessor with a 
small number of instructions (Load, Store, Halt, …, CoreOp).

• The module library includes several hardware modules that have 
been described to the compiler.

• A module is used during the execution phase and executes 
operations found in nested loops in the original program that are 
the bottlenecks of CPU execution.

Instructions:
Load, Store, Halt,

CpyMem, and MatMult

Module: Matrix Multiplication



13

Hardware Modules

• All modules were designed to perform 32-bit floating-point 
(FP) operations. 

• Standard components were developed to reduce the 
development time of the modules for new FPGA boards.
– Standard functional core units. (Types I and II)
– Standard Datapaths.
– Standard Controllers.

• By combining standard components, several modules were 
developed to cover a wide variety of vector operations. 

• Modules were implemented in VHDL.  However, we are 
currently using VHDL generators to generate standard 
controllers and function cores.



14

The Benefits of 
Floating Point Modules

• Applications requiring many significant digits of precision or a
large dynamic range can be developed simply. 

• Hardware debugging is simplified if the user was given an 
application previously written using a programming language 
that contained floating point arithmetic operations.

• There is no need for precision analysis and conversions 
between fixed point and floating point numbers. 

• Floating point RC systems can provide significant speedups 
and can fit into current FPGA-based systems.



15

A Reconfigurable Processor
5 memory example:

PE1

M1 M3

M2 M4

Host

M5



16

The Processing Element Architecture

HOST/MEMORY Interface

PECORE

Pei  or (FPGAj)
To Host

To Memory To Memory



17

The PE Core

Control
Unit

PECORE

To Memory To Memory

Data
Unit

Functional
Cores



18

The Control Unit
• Manages memory read/write transactions.

• Initiates instruction fetch/decode/execution

• Determines when instruction processing is complete 
and turns control back over to the Host/Memory 
Interface.

• One controller handles processing for all hardware 
modules/instructions.

• Changes to the controller are made for each new FPGA 
board based on the vendor’s supplied memory interface.



19

The Data Unit
• Contains a register file (8 32-bit registers) and 
counters for determining when vector instructions are 
complete.

• Contains several memory address registers/counters 
for indexing through input/output vectors.

• Contains up to 7 Functional Cores (FunCores).

Functional Cores
Register File, MARs, 

Counters, Multiplexers,
Etc.

Data Unit



20

Functional Core Definition (Type I)

R0 R1 R7

DONE

ENABLE

• Has one or more 32-bit inputs

• Performs floating point vector 
operations.

• Has simple control.

• Can be built using other FunCores.

• Can include conditional units.

FunCore



21

Sample Functional Cores (Type I)

DONE

ENABLE

+

R0 R1

*

R0 R1

*

R2 R3

+

ENABLE

E

D

E

D

AND

DONE

E

D

Q = R0 + R1

Q = (R0*R1) + (R2*R3)



22

Conditional Functional Cores

>

R0 R1

+

R2 R3

ENABLE

E

D

DONE

AND

If (R0 > R1) THEN  Y = R2 * R3



23

Functional Cores with 
an Accumulator (Type II)

R0 R1 R7

DONE

ENABLE

FunCore
EMPTY

READYTOEMPTY



24

Sample Functional Cores with
with an Accumulator (Type II)

EMPTY

READYTOEMPTY

ENABLE

+

R0

DONE

*

R0 R1

READYTOEMPTY

+E
Em
D

DONE

E

D

ENABLE

EMPTY

Q = Q + R0

Q = Q + (R0 * R1)



25

Two Functional Cores Used 
for LU Decomposition

Delay 
Unit *

______

Q

A B C

Q=A-(B*C)

.
___

.

A B

Q

Q=A/B



26

An Alternative Functional Core 
for LU Decomposition

Q=A- ( (B/C) * D)

/

*

Delay16

Delay8

-

Delay16

A B C D



27

Functional Core 
Performance/CLB Utilization

46.4 MHz2158 (5%)FPMultiply-Accumulate

56.3 MHz2072 (5%)FpDivider

64.7 MHz1245 (3%)FpMultiply

46.1 MHz806 (2%)FpAccumulator

63.9 MHz526 (1%)FPAdder

Maximum Clock 
Frequency

LUTsCore Name

*Xilinx XCV2000E Part, Speed Grade 6, Package FG860

**Available at http://www.imappl.org/~cgloster/rare/vhdl



28

Functional Core Library (contd)

39.1 MHz6094 (15%)DFTCore

56.3 MHz 3868 (10%)LUCore

43.9 MHz1610 (4%)Complex Accumulate

67.0 MHz1025 (2%)Complex Multiply

Maximum Clock 
Frequency

LUTsCore Name

*Xilinx XCV2000E Part, Speed Grade 6, Package FG860

**Available at http://www.imappl.org/~cgloster/rare/vhdl



29

Configurable Microprocessor 
Module Library

45.9 MHz4558 (11%)41Floc-Module

2

2

# of
Cores

5

5

# of
Instructions

13.1 MHz37293 (90%)DFT-Module

55.9 MHz4591 (11%)Add-MAC-
Module

Maximum 
Clock Rate

LUTsModule 
Name

*Xilinx XCV2000E Part, Speed Grade 6, Package FG860



30

Conclusions / Future Research

• We have demonstrated the effective design and implementation of 
functional cores and configurable microprocessor modules

– Modules use standard control/data units
– Modules can contain several function cores
– Modules can contain several simple and complex instructions.

• We have developed configurable microprocessor modules that can 
be automatically selected by a compiler when needed.

• Future Work:
– Enhance hardware modules to perform multiple simultaneous operand 

fetches.
– Modify configurable microprocessor module design to contain an 

instruction pipeline.
– Implement control unit as micro programmed control instead of hard-

wired control.
– Consider the addition of branch instructions to the module.


